Point-Based Planning for Multi-Objective POMDPs
نویسندگان
چکیده
Many sequential decision-making problems require an agent to reason about both multiple objectives and uncertainty regarding the environment’s state. Such problems can be naturally modelled as multi-objective partially observable Markov decision processes (MOPOMDPs). We propose optimistic linear support with alpha reuse (OLSAR), which computes a bounded approximation of the optimal solution set for all possible weightings of the objectives. The main idea is to solve a series of scalarized single-objective POMDPs, each corresponding to a different weighting of the objectives. A key insight underlying OLSAR is that the policies and value functions produced when solving scalarized POMDPs in earlier iterations can be reused to more quickly solve scalarized POMDPs in later iterations. We show experimentally that OLSAR outperforms, both in terms of runtime and approximation quality, alternative methods and a variant of OLSAR that does not leverage reuse.
منابع مشابه
Anytime Point Based Approximations for Interactive POMDPs
Partially observable Markov decision processes (POMDPs) have been largely accepted as a rich-framework for planning and control problems. In settings where multiple agents interact POMDPs prove to be inadequate. The interactive partially observable Markov decision process (I-POMDP) is a new paradigm that extends POMDPs to multiagent settings. The added complexity of this model due to the modeli...
متن کاملPoint-based Dynamic Programming for DEC-POMDPs
We introduce point-based dynamic programming (DP) for decentralized partially observable Markov decision processes (DEC-POMDPs), a new discrete DP algorithm for planning strategies for cooperative multi-agent systems. Our approach makes a connection between optimal DP algorithms for partially observable stochastic games, and point-based approximations for singleagent POMDPs. We show for the fir...
متن کاملQualitative Planning under Partial Observability in Multi-Agent Domains
Decentralized POMDPs (Dec-POMDPs) provide a rich, attractive model for planning under uncertainty and partial observability in cooperative multi-agent domains with a growing body of research. In this paper we formulate a qualitative, propositional model for multi-agent planning under uncertainty with partial observability, which we call Qualitative Dec-POMDP (QDec-POMDP). We show that the worst...
متن کاملScalable Planning and Learning for Multiagent POMDPs
Online, sample-based planning algorithms for POMDPs have shown great promise in scaling to problems with large state spaces, but they become intractable for large action and observation spaces. This is particularly problematic in multiagent POMDPs where the action and observation space grows exponentially with the number of agents. To combat this intractability, we propose a novel scalable appr...
متن کاملScalable Planning and Learning for Multiagent POMDPs: Extended Version
Online, sample-based planning algorithms for POMDPs have shown great promise in scaling to problems with large state spaces, but they become intractable for large action and observation spaces. This is particularly problematic in multiagent POMDPs where the action and observation space grows exponentially with the number of agents. To combat this intractability, we propose a novel scalable appr...
متن کامل